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Preface

This document stresses procedure to calculate characteristic frequencies of double-bass-reflex enclosure. 
Procedure we see here is not newly developed model; however, I lost reference link made by some one else. 
Theoretical procedure presented here is consistent with technical documents published throughout 
http://mcap.webcrow.jp/.

1. Traditional Formulae Review

Nagaoka indicated the formula without reference1. According to current Wikipedia in Japanese, the formula was
developed by Nagaoka himself.

Fig.1 shows typical configuration of double-bass-reflex enclosure. Table 1 gives definitions of symbols. These 
symbols are used throughout this document, but traditional formulae uses different unit system and it is noted 
in this paragraph.
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Fig.1 Resonant Model

 Table 1 List of Symbols
symbol description unit remark

V 1
#1 chamber volume m3

V 2
#2 chamber volume m3

a1
#2 duct cross-
sectional area

m2

a2
#2 duct cross-
sectional area

m2

l 1 #1 duct length m

l 2 #2 duct length m

Nagaoka indicated formulae in the reference. We see the formulae in modified form in order to clarify physical 
interpretation. Following formulae (1) and (2) are modified forms. They assume (a) and (b) below. Note that unit
system is not indicated in the reference book, so that we discuss unit system in this paragraph.

f d1=160√ a1

V 1 l1 √V 1+V 2

V 2

(1)

f d2=160√ a2

l 2(V 1+V 2)
(2)

Assumptions of above formulae:
(a) Two chambers works separately for higher characteristic frequency.
(b) Two chambers are combined and assumed as single to calculate lower characteristic frequency.

Vibration model of double-bass-reflex is equivalent to following spring-mass model (Fig.2).

1 Nagaoka, “20 Selected Newest Original Speaker Designs by Nagaoka Tetsuo”, Ongakunotomosha, 1987, ISBN4-
276-24030-1 C0073 P1550E
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Fig.2 Equivalent Spring-Mass model of Double-Bass-reflex Enclosure

This is not too difficult model to solve theoretically. We discuss theoretical model later.
Interpretation of assumptions are simple. We see the following equivalent spring-mass models below:

Fig.2a Equivalent Model of Assumption (a)

Fig.2b Equivalent Model of Assumption (b)

We notice that assumptions (a) and (b)  are different systems and inconsistent.

In any way we see how the equation (1) and (2) are organized with assumptions (a) and (b).

Equation (1) and (2) are not easily interpreted, therefore we compare with theoretical equations based on 
thermodynamics.

f d1=
1

2π √ k 1+k 2 (1 )

m1

(1)'

f d2=
1

2π √ 1
m2( 1

k1

+
1
k 2(2))

−1

(2)'

We keep in mind that k 2  is not unique value for chamber-duct vibration system: k 2  is function of cross-
sectional are of applied duct.

For m1 , we have following relationship2:

k 2 (1)=
γ a1

2P
V 2

(3).

In the same way, for m2 , we have following relationship:

k 2 (2)=
γ a2

2P
V 2

(4).

2 Refer to document ID MCAP001E of http://mcap.webcrow.jp/documents.html.
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Masses m1  and m2  are expressed as below:
m1=ρa1 l 1 (5)
m2=ρa2 l2 (6)

Substituting equations (3) - (6) for equation (1)', we get:

f d1=
1

2π √ γ P
ρ √ a1

V 1l 1 √V 1+V 2

V 2

(7)

In the same manner, substituting equations (3) - (6) for equation (2)', we get:

f d2=
1

2π √ γ P
ρ √ a2

l 2(V 1+V 2)
(8)

where,
P : atmospheric pressure (=101,300[Pa])
γ : ratio of specific heat of air c p/ cv  (=1.4 for adiabatic condition)
ρ : density of air (=1.2[kg/m3]

other variables : refer to Table 1.

Using SI unit system indicated by Table 1. Coefficient becomes:

1
2π √ γ P

ρ =54.7 for adiabatic condition,  and
1

2π √ γP
ρ =46.2 for isothermal condition.

Because the coefficient does not match the traditional formulas', we assume that traditional formulae use 
following units:

V : [l]
l : [cm]

Then coefficient becomes 
1

2π √ 10 γ P
ρ  instead of 

1
2π √ γ P

ρ .

Now coefficient 
1

2π √ 10 γ P
ρ  becomes 173 for adiabatic condition,  and 146 for isothermal condition.

Coefficient indicated by the traditional formulae is 160 and it is between 173 and 146. It seems that experimental
modification was applied to theoretical value.

Now verification of traditional formulae is complete. Then we discuss theoretical formulae in the next 
paragraph.
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2. Theoretical Formulae

Equations of motion of the bass-reflex enclosure under free vibration condition is 

[m1 0
0 m2][ ẍ1

ẍ 2] = [k1+k 2

a1
2

a2
2 −k 2

a1

a2

−k 2

a1

a2

k 2 ][ x1

x2
] (9)

where,
x : Duct displacement “..” above stands for 2nd-order derivative by time.

Each symbol is defined already in the previous paragraph.

Substituting above symbols for equation (1), then we get :

[ρa1 l1 0
0 ρa2 l 2][ ẍ1

ẍ2
] = γ P[ a1

2

V 1

+
a1

2

V 2

−
a1a2

V 2

−
a1a2

V 2

a2
2

V 2
][ x1

x 2
]

Dividing both sides by ρ, we get:

[a1 l1 0
0 a2 l2][ ẍ1

ẍ2
] =

γ P
ρ [ a1

2

V 1

+
a1

2

V 2

−
a1a2

V 2

−
a1a2

V 2

a2
2

V 2

][ x1

x2] (10)

Characteristic equation  is:

|a1
2( 1
V 1

+ 1
V 2

)−ρa1l 1 λ
γ P

−
a1a2

V 2

−
a1a2

V 2

a2
2

V 2

−
ρa2l 2 λ

γ P
|=0 (11)

We define β for simplicity.

β= ρ
γ P

Rewriting equation (11) with β, we get:

∣a1
2(V 1+V 2)
V 1V 2

−βa1 l 1λ −
a1a2

V 2

−
a1a2

V 2

a2
2

V 2

−βa2 l 2 λ∣=0 (12)

Equation (12) is rewritten as

β2a1a2 l1 l 2 λ
2−β

a1
2a2 l2(V 1+V 2)+a1a2

2 l 1V 1

V 1V 2

λ+
a1

2a2
2(V 1+V 2)
V 1V 2

2 −
a1

2a2
2

V 2
2 =0 (13)

Dividing both sides by a1a2  we get
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β2l1 l 2 λ
2−β

a1l 2(V 1+V 2)+a2 l 1V 1

V 1V 2

λ+
a1a2

V 1V 2

=0 (14)

Equation (14) can be exactly solved with root formula below:

a λ2+bλ+c=0 where, a≠0

Then we have following root formula:

λ=−b±√b2−4ac
2a

(15)

We can calculate constants a , b , and c as follows:

a=β2 l1 l 2

b=−β
a1 l 2(V 1+V 2)+a2 l1V 1

V 1V 2

c=
a1a2

V 1V 2

Characteristic frequency is expressed using eigen value as:

f D=
1
2π

√λ (16)

Because formulae with two equations are too complicated, we have calculation sheet with above procedure
in appendix.
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Appendix

Characteristic Frequency Calculation Sheet(REV00:2018-11-16)
How to use this calculation sheet (double-bass-reflex only)

Put your design value to the cells.(V1, V2, A1, A2, L1, L2)

Any cell in the color left shall not be overw ritten.

Duct length correction model is not incorporated to this sheet. Users shall modify duct length before using this sheet.

Chamber volumes Calculation Results

[litre] [m3]
V1 6.09 0.00609 Primary chamber fd1 110 104
V2 20.4 0.0204 Secondary chamber fd2 54 57

V1+V2 26.49 0.02649 Total * Multiplied by 0.925 to adiabatic model results.

Cross-sectional area of ducts
[cm2] [m2]

A1 25 0.0025 Primary duct

A2 30.25 0.003025 Secondary duct

Length of ducts
[mm] [m] [cm]

L1 126 0.126 12.6 Primary duct

L2 90 0.09 9 Secondary duct

γ ratio of specific heat 1.4 [-]
ρ density of  air 1.2 [kg/m3]
P air pressure 101300 [Pa]
β def ined here 8.4614E-06 [m-4 s2]

stiffness matrix of chamber system
column1 column2

raw1 157.496 -43.812
raw2 -43.812 53.012

coefficients of root formula
a 8.1190E-13
b -5.6403E-07
c 6.0872E-02

sqrt(D) sqrt(b 2̂-4ac) 3.4705E-07

Eigenvalues of equations of motions
λ1 eigen value 1 5.6108E+05
λ2 eigen value 2 1.3363E+05

Corrected values*
fd1 Frequency 1 119.3 110 0.9248554913
fd2 Frequency 2 58.2 54

Characteristic 
frequencies

Corrected 
Values*

Existing 
Formula

characteristic 
f requencies

theoretical values 
w ith adiabatic 

conditions
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